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Abstract

The primary objective of this study was to find the smallest sample size for which

equating based on a random groups design is expected to result in less overall equating

error than had no equating been conducted. Mean, linear, and equipercentile equating

methods were considered. Some of the analyses presented in this paper assumed that the

test scores are normally distributed. Other analyses are not based on this assumption. Real

test data were used to check whether the theoretical methods provide reasonably accurate

results for use in estimating sample size requirements.
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I.Introduction

$ackground

The comparability of scores derived from different tests measuring the same

achievement trait, or ability, is an important concern in educational measurement. The

primary purpose of equating is to achieve this comparability. Alternative forms of a test are

usually constructed from the same content specifications and statistical specifications so that

the item statistics for the forms are relatively similiar. Equating procedures are used to

adjust test scores on alternative test forms that are somewhat different in difficulty so that

the test scores on these forms can be used interchangeably for a specified population. The

examinees used to accomplish the equating should be representative of the population that

will be using the tests.

Equating studies frequently use three types of designs: (1) random groups; (2)

single group with counterbalancing; and (3) common-item nonequivalent groups. In the

random groups design, examinees are randomly assigned the form by a spiraling process.

When this process is used, the first examinee takes Form X, the second examinee takes

Form Y, the third examinee takes Form X, and so on. This spiraling process leads to two

randomly equivalent groups. In this design, differences in the test scores on the alternative

forms are attributed to the differences in difficulty of the alternative forms.

If practice or fatigue factors and order effects which may confound the differences

between test scores on alternative forms can be controlled, then the single group design

with conterbalancing can be used. In this design, every examinee takes both Form X and

Form Y. In one method of counterbalancing, one-half of the booklets are printed with

Form X following Form Y and one -half of the booklets are printed with Form Y following

Form X. When the test booklets are handed out, the first examinee receives Form X first,

the second examinee receives Form Y first, the third receives Form X first, and so on. The
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first form and second form are administered using separate time limits. In this way, the

examinee group receiving Form X first is randomly equivalent to the examinee group

receiving Form Y first (Kolen & Brennan, 1995). Hence, the spiraling process in the single

group design with counterbalancing is similar to that used with the random groups design,

except that in the random groups design each examinee takes only one form of the test.

However, if order effects occur in which there are differences between the equating

relationships for examinees taking Form X first compared to those taking Form Y first,

then the data taken for the second test may need to be discarded.

If only one form can be used per test date for test security reasons, the common-

item nonequivalent groups design might be considered. In this design, examinees from a

specified group take one form on a specified test date and examinees from the other group

take the other alternative form on the other specified test date. Thus the forms are taken by

two nonequivalent groups. In this situation, a common item set in each test form is used to

accomplish the equating.To accurately reflect group differences and to effectively separate

group differences from form differences, the common item set in each test form should

conform to several conditions. First, the common item set should be proportionally

representative of Form X and Form Y in content and statistical characteristics. Second,

each common item should have approximately the same item number in both forms. Third,

the common items should be exactly the same in both forms.

A variety of statistical procedures or equating methods can be used to equate scores

on Form X (new form) and Form Y (old form). Three statistical estimation methods are

frequently used in observed score equating for the random groups design: (1) mean

equating; (2) linear equating; and (3) equipercentile equating. In mean equating, Form X

differs in difficulty from Form Y by a constant amount along the score scale (Kolen and

Brennan, 1995). In mean equating, scores on Form X and Form Y that are an equal

distance away from their respective means are set equal: x -µ(X) = y-µ(Y). Then,



my(x) = y =x-µ(X)+

where x is a particular score on Form X

X is the random variable score on Form X.

y is a particular score on Form Y.

Y is the random variable score on Form Y.

g(X) is the mean on Form X of a population of examinees.

I_t(Y) is the mean on Form Y of a population of examinees.

(1) (2.2)'

my(x) is a score x on Form X transformed to the scale of Form Y using mean

equating.

Par-eat araplerassume-the-me,an-on-F-orrn_X-is-40-and_theinean_oLE Y is 4 by

equation (1), 7 points must be added to each Form X score to transform the X-score to the

Y scale. That is, a score of 40 on Form X indicates the same level of achievement as a

score of 47 on Form Y and a score of 50 on Form X indicates the same level of

achievement as a score of 57 on Form Y. When mean equating is used, the mean of the

converted Form X scores is equal to the mean of the Form Y scores.

With the linear equating method, the differences in difficulty between two forms are

allowed to vary along the score scale. Linear equating is accomplished by setting z-scores

on X ( test score on Form X minus the Form X mean divided by the standard deviation of

the Form X test scores) equal to z-scores on Y ( test score on Form Y minus the Form Y

mean divided by the standard deviation of the Form X test scores) such that

[x-µ(X)] / a(X) = [y-µ(Y)] / a(Y). Then, (2) (2.3)

ly(x) = y = [0(Y) / a(X)] x + (g(Y) - [0(Y)/ a(X)] µ(X)), (3) (2.5)

' Throughout this paper a number of formulas reported in Kolen and Brennan (1995) are used. The second
equation number provided for some equations is the equation number in Kolen and Brennan. Also, the

notation used in this paper is consistent with the notation in Kolen and Brennan.
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where a(X) and a(Y) are the standard deviations of Form X and Form Y scores,

respectively.

ly(x) is the linear conversion equation for converting x on Form X to the scale of

Form Y.

Obviously, if the standard deviations of both forms are equal, then the linear equating

method produces the same result as the mean equating method such that equation (1) is

equal to equation (3). For a linear equating, the mean of the converted scores on Form X is

equal to the mean of the Form Y scores and the standard deviation of the converted scores

on Form X is the same as the standard deviation of the test scores on Form Y. To illustrate

that the difference in test form difficulty varies with score level consider the following

example7Supposed a(X-)=-5, a(Y -)=---371tX-)-407andir(Y-)--457-Thenrthe-resulting-linea

conversion equation is ly(x) = 0.6x + 23 [equation (3)]. Once x is known the equated value

is known. For example, if x=44, then ly(44)=49.4. Alternately, if x=47, then ly(47)=51.2.

If x=49, then ly(50)=53. The difference in difficuly between Form X and Form Y for a

Form X score of 44 is 5.4 (49.4 44) but the difference for a Form X score of 50 is 3 (53 -

50).

Sometimes, the differences in difficulty between two test forms can be displayed by

a curve rather than a straight line. In this situation, equipercentile equating may be

appropriate. In equipercentile equating the cumulative distribution function of converted

scores on Form X is equal to that of scores on Form Y. However, the estimated test score

distributions or equipercentile relationships are somewhat irregular and produce random

error. In this situation, smoothing methods may be used to reduce random error where the

random error arises from the estimation of test score distributions and equipercentile

relationship. Two general types of smoothing are used -- presmoothing and

postsmoothing. In presmoothing, the test score distributions are smoothed and in

postsmoothing, the equipercentile relationship is smoothed. Log-linear and strong-true

10 BEST COPY AVAILABLE
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score methods are often used in presmoothing and the cubic splines method is frequently

used in postsmoothing. The equating results using smoothing are expected to have better

precision than those based on unsmoothed relationships (Kolen & Brennan, 1995).

Purpose

The primary purpose of this study was to estimate the sample size required for

equating using the random groups design. The approach taken in this study was to find the

smallest sample size for which equating is expected to result in less overall equating error

than had no equating been conducted. Mean, linear, and equipercentile equating methods

were considered. Some of the analyses presented in this paper assumed that the test scores

are normally distributed. Other analyses are not based on this assumption. Real test data

from the ACT testing program were used to check whether the theoretical methods which

will be discussed in the following sections provide reasonably accurate results for use in

estimating sample size requirements.

The remainder of this paper is divided into four parts. The next section provides a

conceptual framework for analyzing equating error. Then, previous investigations

concerned with sample size issues in equating are discussed. The procedures used in this

study are described next. Finally, the results are presented and the implications of these

results are discussed.

BEST COPYAVAILABLE
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6

ILA Conceptual framework for analyzing equating error

In this paper, equating is considered to be potentially worthwhile, if application of

an equating method is expected to provide less overall error than does the use of the identity

equating. In the identity equating, it is assumed that a score of 0 on Form X is equivalent to

a 0 on Form Y, that a 1 on Form X is equivalent to a 1 on Form Y, etc. That is, in the

identity equating it is assumed that the two forms are equal in difficulty at all points along

the score scale. Consider a situation in which very few examinees took an examination. For

example, assume we could randomly assign only four examinees to take each of the two

forms. In this situation, would it be better to use the results from linear equating or would it

be better to use the identity equating ? It could be argued that the identity equating would be

preferred if it would be expected to result in less error than equating with these four

examinees. The following discussion attempts to make these concepts more explicit.

Equating error arises from the difference between the Form Y equivalent estimated

from the sample and the population Form Y equivalent. To show the components of total

error, define Ty(xi) as the population Form Y equivalent at a particular score on Form

A
X. Define ty(xi) as an estimator of Ty(xi) that results from using an equating method.

A
Define ty(xi) as equal to the expected value of ty(xi) over replications of an equating

A
method. Define total error at a particular xi as ty(xi)-Ty(xi). Define mean-squared error in

equating at xi using an equating method as

A A
MSE[ty(x,)]=E[ty(x)-Ty(xi)12. (4) (3.5)

Define variance of random error in using an equating method as

A A
Var[ty(xi)]= E[ty(x1)-ty(xi)]2 (5) (3.6)

12



7

Define squared systematic error, squared bias, in equating using an equating method as

(Bias; [ty(x)) )2 = [ty(xi)-Ty(x)]2. (6) (3.7)

Total error is comprised of random error and systematic error as expressed in the

following equation

A A
ty(xi)-Ty(xi)=[ty(xi)-ty(xi)) + [ty(xi)-Ty(xi)),

A
where ty(xi)-ty(xi) is random error and ty(xi)-Ty(xi) is systematic error.

It can be shown that mean-squared error in equating at xi is

A A
E[ty(xi)-Ty(xi)]2 =E[ty(xi)-ty(xi )]2 + [ty(xi)-Ty(x1))2

A A
That is, MSE[ty(x,)]. Var[ty(xi)] + {Bias; [ty(xi)] )2 (7) (3.8)

If the identity equating is used, then the Form Y equivalent of a Form X score is

A A
just the Form X score. That is, ty(xi) = ty(xi) = xi . The estimate, ty(xi) , for identity

equating does not depend on the data. Thus, when using the identity equating, random

A
error variance, Var[ty(xi)] equals zero. However, the identity equating can have a large bias

component. That is, the bias of identity equating is, Bias; = ty(xi) Ty(xi) = xi- Ty(xi), and

Biasi2 = [xi - Ty(xi)]2

Hence, in deciding whether to equate or not, mean-squared error can be used as the

index. If the mean-squared error for the equating method is less than the mean-squared

error for the identity equating under the assumption that the equating method does not have

any bias, then the equating method will produce less mean-squared error than the identity

equating when the random error variance for that equating method is less than the squared

bias for the identity equating. That is, when

A
Var[ty(xi)] < [xi Ty(xi)]2 ,

'13
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A
where Var[ty(xi)] is the random error variance for the equating method.

To provide a single index for equating error, error variance and equating error can

be averaged over score points.' Define fi as the it raw score relative frequency at Form X

A
and eqy(xi) is an estimated equating function that is used to convert test score )ci to the scale

of Form Y which is Form Y equivalent, Hence, the average squared bias over score

points is Xi fi [xi - eqy(xi)]2 and the average error variance over score points is equal to

A
Var [eqy(xi)]. Thus, if

A
I; Var [eqy(xi)] < [xi - eqy(xi)]2, (8)

then the mean-squared error for the equating method is less than the mean-squared error for

the identity equating. In this case, we might decide to use an equating method because

application of the equating method results in less total error than application of the identity

equating.

Standard errors of mean. linear and e ui er entile equating using the random groups
design

In order to report the amount of equating error due to sampling from a specified

population, standard errors of equating are needed. The delta method (Kendall & Stuart,

1977) can be used to derive the estimated standard errors with and without normality

assumptions for various equating methods using a random groups design.

The delta method is based on a Taylor series expansion. Using this method, the

appropoximate sampling variance of an equating function is (Kolen and Brennan, 1995):

A A AA
Var[eqy(x, ; O 02,...,0, )] = 1j eq.; ' 2 Var (0j)-1- II jeqyj 'eq, Coy (0i3O,), (9) (7.6)

A A
where ej and ek are sample estimates of parameters O and ek

14
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eqyj' is the first partial derivative of eqyj with respect to ej .

NY/' 2 is the second partial derivative of eqyj with respect to 0i .

A
eqy (xi ; 01, 02,...,0) is an estimated equating function (mean, linear, or

equipercentile) that is used to convert test score xi to the scale of Form Y which is

Form Y equivalent, yj with estimated parameters 01, 02,...,0,.

In random groups mean equating, 01, 02,...., 0, reduces to only one 0, which is

the mean. In linear equating, 01, 02,...., 0, are two moments and in equipercentile

equating, 01, 02,...., 0, are cumulative probabilities.

Once the sampling variances (Var) of ej and sampling covariances (Coy) of the ej

and ek are known, the estimated variance of a equating function and the estimated standard

error of a equating function are known.

Mean Equating

The derivation of the standard errors for mean equating follows that of Kolen and

Brennan (1995), except that the final equations are modified such that N=Nx=Ny. The

parameters for the sampling variance for mean equating that need to beestimated are p(X)

and i.t(Y). The estimate of mean equating on Form X is

A A A
my(x) = - p.(X) + u(Y). (10)

A A
The error variances for p.(X) and p(Y) are

A A
Var[p(X)] = 62(X)/N and Var[p.(Y)] = 62(Y)/N. (11)

The partial derivatives are

15:
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A A A A
am/aµ(X) = -1 and am/ag(Y) = 1. (12)

If equations (11) and (12) are substituted into equation (9), the general form of the

sampling variance for mean equating is obtained:

A
Var[my(xi)] [a2(X) + cr2(Y)]/N. (13)(7.8)

Equation (13) shows that as sample size increases the standard error of mean equating,

which is just the square root of the sampling variance, decreases.

Linear Equating

The parameters of the sampling variance of linear equating that need to be estimated

are 11(X), j_t(Y), a(X), and a(Y). Based on Braun and Holland (1982), the general form of

the sampling variance without the normality assumption for linear equating is

A
Var[ly(xi)] E [a2(Y)/N]{ 2+[sk(X) + sk(Y)][(xi -1.1(X))/a(X)]

+[(ku(X) + ku(Y) -2)/4][(xi -1.1.(X))/a(X)}2}. (14) (7.9)

With the normality assumption for both X and Y, sk(X)= sk(Y) =0 and

ku(X)= ku(Y) =3, then equation (14) can be simplified to

A
Var[ly(xi)] = [a2(Y)/N[ {2 + [(xi 4(X))/a(X)r). (15) (7.10)

From equations (14) and (15), the error variance for linear equating tends to

become smaller as sample size increases and as the test score on Form X becomes closer to

the test score mean of that form. For nonnormal distributions, the error variance tends to

increase as the indexes of skewness and kurtosis of the X score distribution depart from the

values of these indexes for a normal distribution.

Equipercentile Equating

In the case of equipercentile equating, the parameters that need to be estimated are

cumulative probabilities. Combining equation (10) in Lord (1982) and the notation of

16
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chapter 2 in Kolen and Brennan (1995), the general form of error variance without

normality assumptions is

A
Var[ey(xi)] E--: (1/N){ 1/(G(y*u )-G(y*u -1)12)1 ([P(xi)/100][1-P(xi)/100] 2)

{[G(y*u) P(xi)/1001[P(xi)/100 G(y*u-1)] /[G(y*u) - G(y*u -1)] } ), (16) (7.12)

where P(xi) is the percentile rank for a score of xi; y*u is the smallest integer score

with a cumulative percent 100G(y) that is greater than a given percentile rank; and

G(y*O-G(y*u -1) represents the proportion of examinees at the scores on Form Y.

The amount of error variance for equipercentile equating without normality

assumptions increases as the proportion of examinees at the scores on Form Y, as

symbolized by G(y*u) G(y*u-1) decreases.

Under normality assumptions, Petersen, et al.(1989) used the two-group case and

the continuous case in Lord's study (1982b) to develop the following equation:

A
Var[ey(xi)] = [2a2(Y)/N] [13(xi)/100][1-P(xi)/100] /4)2 }, (17) (7.14)

where 4) is the ordinate of the standard normal density at the unit-normal score, z,

below which P(xi)/100 of the case fall (Kolen & Brennan, 1995).

Minimum sample size require for equating to result in less error than the identity equating

Recall from equation (8), that the application of an equating method was considered

to be preferable to the identity equating if the average error variance for that method was

less than the bias due to the application of the identity equating. To find the minimum

sample size necessary for this property to hold, we start by setting the average error

variance for the method equal to the average squared bias associated with the identity

equating as follows:

A
Z, Var [eqy(xi)] = Ei fi [xi - eqy(xi)]2,

17
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where fi is the ith raw score relative frequency at Form X.

Then, note that all of the error variance expressions in Equations 13 through 17 can be

expressed as 1/N times a quantity made up of parameters (e.g., means, standard

deviations, percentiles). Refer to the quantity apart from the 1/N term as NVAR. In this

case, Var=NVAR/N, so that the preceding equation is the same as

A
(1/N)li fiNVAR [eqy(xi)] = Ei fi [xi - eqy(xi)]2 .

Solving for N, we have

A
N=Ei NVAR [eqy(xi)] / Ei fi [xi - eqy(xi)]2,

which is the sample size required for average error variance for an equating method to be

equal to the average squared bias for the identity equating. A sample size larger than N will

result in the equating method having less average error variance than the identity equating.

In this way, we have a method for finding the minimum sample size required for an

equating method to result in less error than using the identity.

Following this logic, we can obtain sample size estimates for each of the equating

methods as follows,

Mean Equating
A

N = Ei f, [62(X)+a2(Y)] / Ei fi [xi - my(xi)]2. (18)

Linear Equating

A.Under nonnormality assumptions:

N = Ei fila2(Y) (8 + 4zx [sk(X) + sk(Y)] + ;2. [ku(X) + ku(Y) -2] )/4)

A
/ Ei fi [xi ly(xi)]2 . (19)

Because ; =[xi-ii(X)/a(X)1, sk(X), sk(Y), ku(X), and ku(Y) are all constants N can be

computed from equation (19). In the case of linear equating, sample size per form depends

on the characteristics of the test score distributions such as sk(X), sk(Y), ku(X), and

ku(Y).

18



B. Under normality assumptions:
A

N = Ei fi [02(Y) ( 2 + zx2 )] I Ei fi [xi - ly(xi)]2.

Equipercentile Equating

A.Under nonnormality assumptions:

(20)

13

N =E; fi { 1/ [G(YuD-G(Yu-1)}3{[P(x)/100][1-( P(xi)/100 )] 2 [G(Yu*)- G(Yu*-1)} }-

A

[G(Yu*) ( P(x1) /100 (P(x)/100) G(Yu*-1)] } / Ei fi [xi - ey(xi)]2 . (21)

Because G(Yu) G(y`u -1), and P(xi) are all constants, N can be computed from

equation (21). The sample size per form depends on G(y*u) G(y*u -1) which is the

proportion of examinees at scores on Form Y.

B. under normality assumptions
A

N = E, f, { 2 02(Y) [P(xi)/100][1-P(xi)/100]/ (1)2 / fi [xi - ey(xi)]2. (22)

Theoretical Methods

The equations that follow give the minimum sample size requirements so that the

average error variance for equating is less than mean-squared error for the identity

equating. These expressions are given for various equating methods under normality

assumptions using the random groups design.

Mean Equating

Avei-age of Variance = J i[a200 + 0207)] N} g(z) dz

r-
= { [0(X) + &(Y)] / N) 1.m g(z) dz

= [&(X) + a2(Y)] / N

= 2 02(Y) / N ,

where z is a unit-normal variable

g(z) is the probability density function of z.

= [xi -11.]/ a(X)

In this equality, 02(X) is set to equal to 02(Y). Moreover, the integral equals one

19.
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because g(z) is the probability density function of z integrated over its range. If u is taken to

be the maximum proportion of standard deviation units of Form Y that is judged to be

appropriate for the standard error of equating, then u2 = 2/N and N= 2/u2. If the two

sample sizes are equal then

Nto, = 4/u2 (23)

Linear Equating

Average of Variance = J [0.2(y)/2] [ 1/Nx + 1/Ny] [2+7..2] g(z) dz

= [a2(Y)/2] [ 2/N] L. [2+72] g(z) dz

= [a2(Y)/N] [ 2 L g(z) dz + g(z) dz ]

= 3 a2(Y)/N

In this equality, the first integral equals one because g(z) is the probability density

function of z integrated over its range. The second integral equals one because the

variance of a unit-normal variable z equals one, and this integral represents the variance. If

u is taken to be the maximum proportion of standard deviation units of Form Y that is

judged to be appropriate for the standard error of equating, then u2 = 3/N and N= 3/u2. If

the two sample sizes are equal then

Ntot = 6/u2 (24)

Equipercentile Equating

To set up average variance and minimum sample sizes required in the equipercentile

equating, first we divide the test score distribution into several parts at i = -3, -2.5, -2, -1.5,

-1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3. Second we let 4; be the normal density at i = -3, -2.5, -2,

-1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3 and then standardized 0; such that the densities sum

to 1( i.e.; fi' = VI; Ot and /1f;' = I; [0t/ I; 4,] = 1.). Hence, from equation (17) we get
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Average of Variance = [(2a2(Y))/N] fi' [ Pi (1-P1)/ 4);2]. If u is taken to be the maximum

proportion of standard deviation units of Form Y that is judged to be appropriate for the

standard error of equating, then u2 = [2/N] [Ii fi' [ Pi (1-131)/ 4)i2] land

N= [2/u2] fi' [ (1-13i)/ 4);2]) . If the two sample sizes are equal then

Nto, = 4 Ei fi' [ Pi (1-Py 41;2 /ll2 , where Pi is the probability at i (25)

An alternative theoretical approach is to derive the minimum sample size

requirements based on z-scores of -2 and +2. In this approach, the minimum sample size is

taken as that sample size for which equating produces less overall equating error than the

identity equating at z= -2 and +2.

Mean equating

A
var[my(xi)]:,--4432(X)+02(Y)]/N

u2a2(Y) E[432(X)+c72(Y)]/N

N = [02(X)+02(Y)]/ [u20-2(Y)]. (1/u2)[1+ (432(X)/a2(Y))]

since zx=2 x-11(X)=243(X)

y-1100=2000
set x-g(X)=24:7(X)=y-p.(Y)=2a(Y); c(X)=0(Y)

Nio, = 4/u2

Linear equating

(2/u2 )(2-FZ2x ), where N=2

Nio, = 12/u2

Equipercentile equating

4[P(x.i)/100][1-P(xi)/100]/[u2412] = 30.5626/ u2

where zx=2, P(xi)=.9772, =.0540

21
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In order to estimate the equating relationship for a specified population, sampling

from that specified population is required, and random error is present. Hence, it is

obvious that the standard errors of equating decrease as the sample sizes increases.

However, systematic errors are not necessarily related to sample size. That is, systematic

errors arise from the differences between theequating using the identity and the equating

using other equating methods in the random groups design.
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III.Review of the literature

In this section, several studies that investigated the standard errors for various

equating designs are reviewed. These studies focused on the use of small samples. At the

end of this review, the importance of the results obtained from these studies for the current

investigation is considered.

Livingston (19931

The purpose of the Livingston (1993) study was to investigate how log-linear

presmoothing procedures can be used to improve the overall accuracy of equating using the

common-item nonequivalent groups design. Form X and Form Y were selected from a

100-item test with 58 noncommon items and 24 common items on each form. Form X was

to be equated to Form Y by a chain equipercentile equating. The 24 common items on both

forms mirrored the content distribution as similarly as possible, while differing

systematically in difficulty. The data were taken from the responses of 93,283 test takers.

Each of those 93,283 test takers had a score on each form and a score on the 24 common

items. Then, a direct equipercentile equating of test score distributions on both forms in the

population of 93,283 examinees was conducted as a criterion equating for assessing the

results of the equatings based on samples from the population. Anchor equatings were

performed with samples of 25, 50, 100, and 200 test takers. For each sample size, a pair of

samples was used to create unsmoothed distributions. Two-moment, three-moment, and

four-moment smoothing methods were used with the joint distribution of scores on the 58

noncommon-items and the 24 common-items over 50 replications of the equating

procedure. The accuracy of equating was assessed in terms of the root-mean-squared

A
deviation (RMSD) defined as follows: Let x represent a score on Form X. ey(;) represent a

score x on Form X transformed to the scale of Form Y in the direct equipercentile equating
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in the population. Let ey,(;) represent the score on Form Y that equates to x in the jth

replication of the anchor equipercentile equating. Then, RMSD(x) is equal to:

A
RMSD (x) = square root { [; (eyr(xi) - ey(;)) / R] },

where j=1,2,3,...,50 and R=50

Based on Livingston's definition and equation, RMSD is very similar to the estimated

bootstrap standard errors of equating.

The results from Livingston's study show that the two-moment, three-moment, and

four-moment smoothing methods significantly improved the equating as compared to the

unsmoothed method. Regardless of sample size, the three-moment smoothing method had

the smallest RMSD. It produced the most accurate results relative to the unsmoothing

method.

Parshall. Houghton, and Kromrey (1995)

Parshall, Houghton, and Kromrey (1995) compared standard errors of equating for

five subject matter tests using linear equating and a common-item nonequivalent groups

design. Each subject test had two parallel forms (Form X and Form Y). Samples of 15, 25,

50, 100, and 500 were randomly selected with replacement for 1000 replications. For each

pair of Form X and Form Y tests at each size level, they estimated the linear equivalent at ;

A
and referred to this estimate as ly,(;). This procedure was repeated 1000 times and

A A A
bootstrap estimates 1,11(;), ly2(xi),..., ly1000(xi), were obtained. The accuracy of equating

was evaluated by computing bootstrap standard errors of equating. The standard errors of

linear equating were the standard deviations of the obtained linear equated scores xi in the

bootstrap samples. Then, the estimated standard errors were defind as

A A A A
SE[ly(;)] = square root (1, [11,(xi) ly.(;)]2/ (R-1) },
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A A A
where SE[Iy(xi)] is standard error for equated score xi, lyr(xi) is obtained equated

A
score xi in jth replication, ly.(xi ) is mean equated score x, over the 1,000

replications (R=1000).

The results for each of the five tests showed that the standard errors decreased near

the mean raw score and increased farther away from the mean raw score. As the sample

size increased the standard error became smaller. There was a tendency in the larger

samples for the standard error curves to rise less sharply than for smaller samples.

Lord (1982)

In the Lord (1982) study, he derived the standard error of equipercentile equating

for four different situations: (1) scores x and y are continuous in the random groups design;

(2) scores x and y are positive integers in the random groups design; (3) scores x and y are

positive integers in the single group design; (4) scores x and y are continuous in the single

group design. Situations (1) and (2), which deal with the random groups design, are

related to this paper. In situation (1), one thousand students who had scores x and y on

parallel Forms X and Y were randomly drawn from a population. From these 1000

A
students the equated score, ey(xi), was computed at xi = 0, 0.5, 1.0, 1.5, 2.0, 2.5

(repeated 1000 times for each xi ). Lord used an equation equivalent to equation (17) when

N=IIx=Ny=1/2 Nio, to compute "standard errors of equipercentile equating for normally

distributed variables." The results showed that the size of the standard error along the X

score scale was "acceptably" small.

Kolen (1985)

Kolen (1985) derived large sample standard errors for the Tucker method of linear

equating with and without normality assumptions in the common-item nonequivalent
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groups design. He used a computer simulation and a real data example. The bootstrap

method was used to verify the accuracy of the derived standard errors.

A computer simulation was conducted to study the estimated standard errors. To

mirror the score distributions of test forms from two different testing programs, score

distributions were simulated. The simulation included a nonsymmetric simulation and a

nearly symmetric simulation. For the nonsymmetric simulation the score distributions for

the two test forms modeled those of a particular professional certification testing program.

For these simulations the score distributions were negatively skewed.The nearly symmetric

simulation modeled score distributions that were symmetrical. Simulations were conducted

for two sample sizes: 100 examinees per form and 250 examinees per form.The delta

method with the normality assumption and without the normality assumption was used to

estimate standard errors of equating for each X score. The standard deviation of Form Y

equivalents of a given X score over the 500 replications was defined as the "true" standard

error of equating. The mean delta method standard error based on the normality assumption

over the 500 replications was defined as the normal delta method standard error associated

with each X score. The nonnormal delta method was defined similarly.

The results indicated that the standard errors became larger at the extremes and

smaller near the mean X score. The standard errors also decreased as sample size

increased. For both simulations, the standard errors based on the nonnormality

assumptions were more accurate than the standard errors based on the normality

assumptions.

Root mean squared errors (RMSE), a measure of the variability in estimating

standard errors, was defined as follows.

"The variance of the estimated standard errors over the 500 replications was

computed and added to the squared difference between the "true" standard error and

the delta method standard error. The square root of this sum is RMSE."
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The RMSE was smaller for the nonnormal standard errors than for the normal

standard errors except for the nearly symmetric simulation with sample size of 100.

The bootstrap standard error was also used to evaluate the accuracy of the standard

errors. The bootstrap standard error was defined as the standard deviation of the obtained

equated scores over replications. Real data from Form X and Form Y (each form had 125

noncommon-item and 30 common-item) were used. 773 examinees from population 1 took

Form X and 795 examinees from population 2 took Form Y.

The results from this real data example illustrated again that the standard errors

became larger at the extremes and smaller near the mean X score. Standard errors derived

from the delta method without the normality assumption were very similar to those derived

from the bootstrap method. In addition, at the higher scores, the standard errors under the

normality assumption were slightly larger than those derived with nonnormality

assumption; whereas, at the lower scores, the standard errors under the normality

assumption were slightly smaller than those derived with nonnormality assumption.

In summary, the results from the computer simulations illustrated that the standard

errors based on nonnormality assumptions were more accurate than those based on normal

assumptions, particularly for large samples. The results from the real data example

provides evidence that the bootstrap standard errors are very similar to the delta method

standard errors without the normality assumption.

Summary

Some important results from these related studies are discussed below.

Livingston (1993) and Parshall, Houghton, Kromery (1995) used the bootstrap

method to deal with standard errors of equating while Lord (1982), and Kolen (1985) used

both the delta and bootstrap methods to derive standard errors of equating. In the Kolen

(1985) study the standard errors derived from the delta and bootstrap methods were very

similar for both linear and equipercentile equating of number-correct scores when a large
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number of bootstrap replications are used (i.e., 1000 replications). Based on the foregoing

empirical studies, the bootstrap method and the delta method standard errors can be

expected to be similar.

As expected, as the sample size becomes larger, standard errors become smaller.

This outcome was illustrated in the Livingston (1993), Parshall, Houghton, Kromery

(1995), and Kolen (1985) studies for the common-item nonequivalent groups design.

In the Livingston (1993) study, the log-linear presmoothing method did improve

the overall accuracy of equating as compared to no smoothing. However, for

presmoothings, the highest degree of presmoothed distributions did not always produce

the most accurate equating.

Parshall, Houghton, Kromery (1995) and Kolen (1985) observed larger standard

errors of equating at score points deviating from the mean

Only Kolen (1985) and Lord (1982) considered standard errors of equating under

both normality and nonnormality assumptions. In the current study, both normality and

nonnormality assumptions are considered. In practice, score distributions may not meet the

normality assumption. In real situations, it is appropriate to derive the standard errors under

the nonnormality assumption. Moreover, the studies reviewed considered the standard

error of equating in the common-item nonequivalent groups design but they did not

simultaneously use mean, linear, and equipercentile equatings to compute standard errors

of equating for a random groups design. This study considers the magnitudes of standard

errors and minimum sample sizes required for mean, linear, and equipercentile equatings in

the random groups design.
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IV.Procedures

The procedures used both to investigate the standard error at selected score points

for various sample sizes under different equating methods and to investigate what sample

sizes are needed to obtain equating error values less than the identity equating values are

described below.

1. For selected raw score distributions, select an approptiate C value, the order of

a polynomial log-linear model used to fit each raw score distribution.

2. Equate each of these distributions to the old form using the smoothed

distributions and equipercentile equating.

3.Estimate what the standard error would be at selected score levels for various

sample sizes per form-- 25, 50, 100, 200, 500, and 1,000 using the square root of

equations (13), (14), and (16) for mean, linear, and equipercentile equating with

nonnormality assumptions, respectively over the all Form X raw score points

and using the square root of equations (13), (15) and (17) for mean, linear, and

equipercentile equating with normality assumptions, respectively over all Form X

raw score points.

4.Estimate what the minimum sample size needs to be to reduce equating error

relative to the identity equating using equations (18), (19) and (21) for mean, linear

and equipercentile equating with nonnormality assumptions.

5.Estimate what the minimum sample size needs to be to reduce equating error

relative to the identity equating using equations (18), (20) and (22) for mean, linear

and equipercentile equating with normality assumptions.

6. Estimate what the minimum sample size needs to be to reduce equating error

relative to the identity equating using equations (18) through (22), for mean, linear

and equipercentile equating with nonnormality and normality assumptions for real

data.
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7. Compare the results from Method 1 [The u values are derived from real data and

these values are used in equations (23) through (25).] with those from Method 2

[equations (18), (20), and (22) are used and do not require a u-value.].2

2 Method 1 and Method 2 are defined in the next section.
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V.Results

The science subtest of the ACT Assessment provided the basic data for

investigating the standard errors of equating and the minimum sample sizes needed to

obtain less equating error than the identity equating. This test was selected because the

score distributions tend to vary across test forms. Table 1 gives descriptive statistics for

each of the three forms used in this study. Form Y is considered the old form and Forms X

and Z are considered the new forms for investigating standard errors of equating and

minimum sample size requirements under mean, linear, and equipercentile equating.

As can be seen in Table 1, Forms X and Z are both slightly more difficult and

slightly less variable than Form Y. Also, the score distribution for Form X is positively

skewed and the Form Z distribution is negatively skewed. The Form Y distribution is also

negatively skewed. All three score distributions have kurtosis values less than 3.0.

Table 1 also shows the moments and fit statistics for presmoothing on Form Y,

Form X, and Form Z. The next-to-last column shows the likelihood ratio chi-squared

statistics (with degrees of freedom) for each C-value. This chi-squared test is an overall

goodness-of-fit test that compares the fitted log-linear model to the empirical score

distribution. The log-linear model is assumed to fit the empirical score distribution if this

chi-squared test is not statistically significant at the given a. For example, x2 (33) = 21.996

at C =7 on Form Y means that the log-linear model with polynomial of degree 7 fits the

empirical score distribution because 21.996 is smaller than the chi-squared table value at

a=0.05 with df=30 (43.77). The last column at the right provides a difference statistic,
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X2c X2c+i with one degree of freedom. X2c X2c+i is the difference between the overall

x2 at C and the overall x2 at C+1. If X2c X2c+lis statistically significant, then the log-

linear model with C+1 improves the fit over that of the model with C.

The C-value for Form Y is 7 because its chi-squared value with df=33 (21.996)

was smaller than the chi-squared table value at a=0.05 with df=30 (43.77) and its

difference chi-squared value with df=1 (2.23) is smaller than the chi-squared table value

with df=1 at oc=0.05 (3.841). C-values of 8 for Form X and 6 for Form Z were selected

based on a similar analysis. Figure 1,2,and 3 show the fit of the smoothed distributions to

the actual raw score distributions.

Standard Errors

Mean Equating

For mean equating, the standard error at all score points is the same. The results

reported in Table 2 are based on equation (13). The values of the standard errors for the

sample sizes of interest in this study are provided in Table 2. As expected, the standard

errors decrease as sample size increases for both Form X and Form Z. However, the

standard error for Form Z is greater than the standard error for Form X for all sample sizes.

Linear Equating

Tables 3 and 4 provide the standard error values for linear equating based on

equation (14) [nonnormality assumption]. Tables 5 and 6 give the standard errors for linear

equating based on equation (15) [normality assumption]. Figures 4 through 7 provide a

graphical representation of these standard errors. Again, the standard errors decrease as

sample sizes increase for both Form X and Form Z. However, unlike mean equating, for

linear equating, the standard error becomes less as the raw score value approaches the mean

score.
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Four different situations are discussed below: (1) Table 3 vs Table 4 across

forms within nonnormality assumptions; (2) Table 5 vs Table 6 -- across forms within

normality assumptions; (3) Table 3 vs Table 5 across conditions within Form X; and (4)

Table 4 vs Table 6 -- across conditions within Form Z.

In situation (1), Form X has the smaller standard errors relative to the standard

errors for Form Z over the range of raw scores between 0 and 24 for all sample sizes.

However, Form X has the larger standard errors relative to the standard errors for Form Z

over the range of raw scores between 25 and 40 for all sample sizes.

In situation (2), Form X has the smaller standard errors relative to the standard

errors for Form Z over the range of raw scores between 0 and 23 for all sample sizes.

However, Form X has the larger standard errors relative to the standard errors for Form Z

over the range of raw scores between 24 and 40 for all sample sizes.

For both situation (3) and (4), standard errors based on the nonnormality

assumption are smaller than standard errors based on the normality assumption at all score

points for all sample sizes.

Equipercentile Equating

Tables 7 and 8 give the standard error values based on equipercentile equating using

equation (16) [nonnormality assumption]. The standard error values in Tables 9 and 10 are

based on equation (17) [normality assumption]. Figures 8 through 11 provide standard

error values for both Form X and Form Z and for both conditions3. Again, the standard

errors decrease as sample size increases for both forms and under both with nonnormality

and normality conditions.

As before, four different situations are discussed below: (1) Table 7 vs Table 8 --

across forms within nonnormality assumptions; (2) Table 9 vs Table 10 -- across forms

No standard errors are given for raw scores 0 and 1 in Tables 7 through 10. These points have very small
standard errors -- almost "0". Figures 8 through 11 delete raw scores with percentile ranks less than 0.5.
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within normality assumptions (3) Table 7 vs Table 9 -- across conditions within Form X;

and (4) Table 8 vs Table 10 -- across conditions within Form Z.

In situation (1), Form X has smaller standard errors relative to the standard errors

for Form Z over the range of raw scores between 15 and 40 (except for raw scores of 35,

36, 38) for all sample sizes. Over the range of raw scores between 3 and 7 on Form X and

over the range of raw scores between 4 and 8 on Form Z very large standard errors occur.

[For Form X, over the range of raw scores between 3 and 7 the values of G(yu*) G(Yu*-

1) are smaller than 0.002 and their percentile ranks are smaller than 0.2. For Form Y, over

the range of raw scores between 4 and 8 on Form Z, the values of G(yu*) G(y11*-1) are

smaller than 0.0006 and their percentile ranks are smaller than 0.081 For Form X, as the

raw score values approaches 40 (except for raw scores of 35, 36, and 38), the standard

error decreases. For Form Z, as the raw score values approaches 40 (except for raw scores

of 34, 37, and 39), the standard error decreases.

In situation (2), Form X has smaller standard errors relative to the standard

errors for Form Z both over the range of raw scores between 7 and 17 and over the

range of raw scores between 19 and 23 for all sample sizes. However, Form X has

larger standard errors relative to the standard errors for Form Z at other score points for all

sample sizes.

In situation (3), the standard errors under the nonnormality assumption are smaller

than the standard errors under the normality assumption over the range of raw scores

between 27 and 40 for all sample sizes. On the other hand, nonnormality assumption has

the larger standard errors relative to normality assumption over the range of raw scores

between 2 and 26 for all sample sizes.

In situation (4), the nonnormality assumption results in smaller standard errors

relative to the normality assumption over the range of raw scores between 29 and 40 for all

sample sizes. However, the nonnormality assumption results in larger standard errors
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relative to normality assumption over the range of raw scores between 2 and 28 for all

sample sizes.

Sample Sizes Required

Table 11 shows the sample size required so that a particular equating produces less

overall equating error than the identity equating. The values in Table 11 are based on

equations (26), (27), and (28) assuming normality. As an illustration of the interpretation

of the data in Table 11 consider the row with standard deviation unit equal to 0.1. The

values in this row represent the sample sizes required so that over the range of Form X z-

scores between -2 and 2, the standard error of equating will be less than 0.1. Thus, for

example, for mean equating a sample size of 400 is required in order for this procedure to

provide less error than the identity equating when u=0.1. For u=0.1, equipercentile

equating requires a sample size about three times as large as that required for linear equating

and requires almost eight times as many examinees as mean equating.

Table 12 provides similiar information, except that the values in Table 12 were

derived using equations (23), (24), and (25). Again, it can be seen that equipercentile

equating requires considerably greater sample sizes than linear equating and mean

equating.4

In mean equating, the sample size required remains the same for all standard units

regardless of which method is used. (See Tables 11 and 12.) However, the sample size

required with linear equating using the average variance criterion is only one-half that

required for the +2/-2 criterion. Likewise, the sample size required in equipercentile

equating for the average variance criterion is consistently less than the sample size based on

° The major difference between the two theoretical methods used to obtain the values in Tables 11 and 12 is
described below. As mentioned, the rationale for deriving equations (26) through (28) was to identify the
sample size needed at z = +2 and / or -2 for a specific u value. The rationale for the other theoretical method
based on equations (23), (24), and (25) was to identify the sample size needed so that the average error
variance for equating is less than mean-squared error for the identity equating for a specific value of u.
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the +2/-2 criterion. As indicated in Tables 11 and 12, equipercentile equating requires larger

samples than either linear equating or mean equating.

The minimum sample size requirements based on real data are summarized in Table

13. The values in Table 13 are based on the ACT science test scores and equations (18),

(19), (20), (21), and (22). The minimum sample size requirements for mean equating to

have less error than the identity equating on Form X and Form Z are 22 and 81,

respectively [equation (18)]. The minimum sample size requirements for linear equating to

have less error than identity equating for Form X and Form Z under nonnormality /

normality assumptions are 29, 89, 32, and 99, respectively [equation (25)]. Finally, the

minimum sample size requirement for equipercentile equating to be better than the identity

equating for Form X and Form Z under nonnormality / normality assumptions are 44, 145,

51, and 161, respectively. For each equating method, Form Z requires larger sample sizes

than Form X under both conditions. If normality assumptions are made, greater sample

sizes are needed relative to the nonnormality assumptions for these tests.

To evaluate whether the theoretical methods (assuming normality assumption)

provide reasonably accurate sample size estimates, equations (23), (24), and (25) were

used. The u2 values needed in these equations were estimated using the following formula;

[ [ ey(xi)]2 ) a2(y) u2 (29)

Table 14 shows both the theoretical sample size estimate (Method 1) and the sample

size estimate based on the actual equating (Method 2). As can be seen in Table 14, the

sample size estimates derived from the actual equating are approximately the same as the

estimates based on the theoretical models.
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VI.Discussion and Conclusions

Based on real data, in general, as the sample size increases, the magnitude of the

standard errors decreases for both forms. ( E.g., the smallest standard errors are found at

n=1000; whereas, the largest standard errors are found at n=25.) In linear equating, the

standard error becomes less as the raw score value approaches the mean score. In

equipercentile equating, with nonnormality assumptions, raw scores less than or equal to

10 are associated with greater standard errors but the standard errors become smaller as the

raw score approaches the middle score. For both forms, standard errors associated with

normality assumptions have the smallest standard errors over the range of raw scores

between 20 and 26 and have the largest standard errors at extreme score points. Based on

these results, it is reasonable to conclude that standard errors become less as sample size

increases and that they tend to be less for middle scores than the extreme scores for both the

linear and equipercentile methods.

As shown in Tables 11 and 12, the two theoretical methods for deriving minimum

sample size estimates do not provide the same estimates for either the linear or

equipercentile method. As can be seen given equations (23) and (26), the minimum sample

size estimates are the same in mean equating. However, for linear and equipercentile

equating, equations (24) and (25) are derived so that the average error variance (over the

z-range -3 to +3) for equating is equal to the average-squared bias. Whereas, equations

(27) and (28) are derived so that the standard error of equating at a z value of -2 and +2 is

equal to u standard deviation units on Form Y. Thus, it is not surprising that the sample

size estimates based on equations (27) and (28) are greater than those based on equations

(24) and (25).

The minimum sample size requirements for equating to result in less overall

equating error than the identity equating for real data were provided in Table 13. For each

equating method, Form Z requires a greater sample size than Form X under all conditions.
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The reason why Form Z requires a larger sample size than Form X is because the mean,

standard deviation, skewness, and kurtosis of raw score distributions, provided in Table 1,

between Forms Z and Y (24.35 vs. 25.92; 6.56 vs. 7.55; -0.17 vs. -0.28; 2.44 vs. 2.30)

are closer to one another than those for Forms X and Y (22.9 vs. 25.92; 6.25 vs. 7.55;

0.12 vs. -0.28; 2.45 vs. 2.30). That is, Forms Z and Y are more similar to one another

than Forms X and Y. Moreover, a greater sample size is needed under normality

assumptions than under nonnormality assumptions for linear and equipercentile equating

methods. Comparing equation (19) to (20), the magnitude of (8+ 4z [sk(X)+sk(Y)]+

[ku(X) + ku(Y) -2] }/4 in equation (19) is small relative to &(Y) ( 2 + ;2) in equation

(20), so a greater sample size is needed under normality assumptions than under

nonnormality assumptions for linear equating. That is, kurtosis plays an important role

here. Similarily, the magnitude of

{1/ [G(Yu*)-G(Yu*-1)]3{[P(x)/100][1-( P(xj)/100 )1 2 [G(Yu)- G(Yu*-1)] }-

f [G(yu*) - ( P(xj)/100 )] [ (P(70/100) G(yu*-1)] } } in equation (21) is small relative to

(2 &(Y) [13(70/100][1-P(xi)/100]/ 02 }in equation (22), so a greater sample size is needed

under normality assumptions than under nonnormality assumptions for equipercentile

equating. That is, G(y*u) - G(y'u -1), which is the proportion of examinees at scores on

Form Y, plays an important role here. As compared to mean and linear equating, the

equipercentile equating method requires greater sample sizes.

Two different methods were used to estimate the minimum sample size using real

data. Method 1 requires u-values to be estimated from the data; whereas, Method 2 does

not require the use of a u-value. If the sample size estimates obtained from these two

methods are similar, then setting the average error variance equal to u2 x 02(Y) (Method 1)

is consistent with setting the average error variance equal to the average squared bias

(Method 2). As can be seen in Table 14, the minimum sample size requirements for both
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forms under Method 1 and Method 2 are similar . Thus, it seems reasonable to set the

average error variance equal to the average squared bias or to set the average error variance

equal to u2 x a2(Y) for all three equating methods.

Two other approaches to sample size estimation that assume that the scores on

Form X are normally distributed have been discussed in Kolen and Brennan (1995). One

approach is to choose a sample size so that the standard error of equating is small relative to

the standard deviation (Method 3). Another approach chooses a sample size so that the

standard error of equating is small relative to the standard error of measurement (Method

4). The following paragraphs summary these alternative approaches from Kolen and

Brennan (1995) and illustrate and discuss how these alternative approaches be used and

contrasted with Method 1 and Method 2 for this study.

Method 3:

Linear Equatingwith the random .groups design:

Consider equation (7.10). Let u is the maximum number of Form Y standard

deviation units allowed for equating and equation (7.10) can be written as

u2 a2(Y) [02(Y)/N] {2 + [(xi -1.1(X))/a(X))2).

Then, N E {2 + [(xi t.t(X))/a(X))2)/ u2.

Therefore, Ntht a 2 {2 + [(xi - 11.(X))/a(X)]2)/ u2. (30)(7.18)

Thus, N, is the total sample size required for the standard error of equating to be equal to

u standard deviation units on Form Y. To illustrate how this approach can be used on real

data in this study, let u equal 0.44. Then, the total sample size required over the range of

Form X z-scores between +2 and -2 is 62, based on equation (7.18), which is a larger

sample size requirement than either Method 1 (31) or Method 2 (32) as shown in Table 14.

Thus, at least 62 examinees would be needed over the range of Form X z-scores between

+2 and -2 provided the standard error of equating will be less than 0.44 Form Y standard
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deviation units using linear equating based on real data under this approach. Similarly, let u

equal 0.25. Then, the total sample size required over the range of Form Z z-scores between

+2 and -2 is 192, which leads to larger sample size requirements than Method 1 (96) and

Method 2 (99) as shown in Table 14. Thus, at least 192 examinees would be needed over

the range of Form Z z-scores between +2 and -2 provided the standard error of equating

will be less than 0.25 Form Y standard deviation units using linear equating based on real

data under this approach.

Equipercentile Equating:

Consider equation (7.14) and use the same rationale that was used with linear

equating then N can be written as

N = 2{ [P(xi)/100][1-P(xi)/100] }/ u2 se.

Therefore, Ntht = 41[P(;)/100][1-P(xj)/100] }/ u202. (31) (7.19)

For example, based on real data in this study, if u=0.45 then the total sample size required

over the range of Form X z-scores between +2 and -2 is 151 based on equation (7.19),

which leads to larger sample size requirements than Method 1 (60) and Method 2 (51) as

shown in Table 14. Thus, at least 151examinees would be needed over the range of Form

X z-scores between +2 and -2 provided the standard error of equating will be less than

0.45 Form Y standard deviation units using equipercentile equating based on real data

under this approach. Similarly, if u=0.25 then the total sample size required over the range

of Form Z z-scores between +2 and -2 is 489, which leads to larger sample size

requirements than Method 1 (193) and Method 2 (161) as shown in Table 14. Thus, at least

489 examinees would be needed over the range of Form Z z-scores between +2 and -2

provided the standard error of equating will be less than 0.25 Form Y standard deviation

units using equipercentile equating based on real data under this approach.
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This approach which chooses a sample size so that the standard error of equating is

small relative to the standard deviation (Method 3) will lead to larger sample size

requirements than Method 1 and Method 2 for Forms X and Z provided in Table 14.

Method 4:

This approach chooses a sample size so that the standard error of equating is small

relative to the standard error of measurement. Thus, the relationship between standard error

of measurement units (usem) and the maximum number of Form Y standard deviation units

allowed for equating (u) needs to be explored.

First, recall the relationship between the standard error of measurement (sem) and

Form X score reliability. That is,

sem = a(Y) x square root of [1 p( X,Y) ], (31)

where p( X,Y) is alternate forms reliability

Then, equation (31) can be written as

usemx sem = usem x fa(Y) x square root of [1 p( X,Y)] )

From the earlier definition of u,

usem x square root of [1 - p( X,Y)] = u. (32)

Thus, once p( X,Y) and usem are known then u can be computed and equations (7.18) and

(7.19) can be used for estimating the total sample size required using linear and

equipercentile equating with the random groups design.

The other practical issue in sample size determination is to hypothesize extent to

which two forms differ in terms of u. For example, in Table 11, the sample size required is

determined by a given level of equating precision. That is, the investigator has to decide on

the appropriate magnitude for u. In order to answer this question, the investigator can

examine test forms from similar testing programs. For instance, if two forms differ by a
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maximum of 0.2 Form Y standard deviation units in a similar testing program, then the

investigator might select u=0.2.
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Table 1. Moments and Fit Statistics for Presmoothing

Form Y
Mean s.d. skewness kurtosis x2 (df) x2C X2C+1

Raw 25.922498 7.552886 -0.284190 2.302154

Log-linear
C=10 25.922498 7.552886 -0.284190 2.302154 18.059(30) 0.000
C= 9 25.922498 7.552886 -0.284190 2.302154 18.370(31) 0.312
C= 8 25.922498 7.552886 -0.284190 2.302154 19.735(32) 1.365
C= 7 25.922498 7.552886 -0.284190 2.302154 21.966(33) 2.230
C= 6 25.922498 7.552886 -0.284190 2.302154 27.669(34) 5.703
C= 5 25.922498 7.552886 -0.284190 2.302154 36.905(35) 9.236
C= 4 25.922498 7.552886 -0.284190 2.302155 39.516(36) 2.611
C= 3 25.922498 7.552886 -0.284190 2.614418 113.213(3.7) 73.697
C= 2 25.922498 7.552886 -0.328621 2.690028 115.407(38) 2.193
C= 1 25.922498 10.924828 -0.624494 2.344978 1272.280(39) 1156.873

Form X
Mean s.d. skewness kurtosis x2(df) x2C- x2C+1

Raw 22.901472 6.248523 0.123761 2.451064

Log-linear
C=10 22.901472 6.248523 0.123761 2.451064 22.546(30) 0.000
C= 9 22.901472 6.248523 0.123761 2.451064 23.124(31) 0.578
C= 8 22.901472 6.248523 0.123761 2.451064 25.860(32) 2.737
C= 7 22.901472 6.248523 0.123761 2.451064 29.726(33) 3.865
C= 6 22.901472 6.248523 0.123761 2.451064 31.613(34) 1.887
C= 5 22.901472 6.248523 0.123761 2.451064 31.664(35) 0.051
C= 4 22.901472 6.248523 0.123761 2.451064 31.999(36) 0.334
C= 3 22.901472 6.248523 0.123761 2.806226 82.458(37) 50.460
C= 2 22.901472 6.248523 -0.054557 2.861598 105.399(38) 22.941
C= 1 22.901472 11.617498 -0.297264 1.920897 2823.196(39) 2717.797

Form Z

Mean s.d. skewness kurtosis X2(df) 7C2C x2C.1

Raw 24.345199 6.558786 -0.165047 2.436220

Log-linear
C=10 24.345199 6.558786 -0.165047 2.436220 28.756(30) 0.000
C= 9 24.345199 6.558786 -0.165047 2.436220 29.393(31) 0.637
C= 8 24.345199 6.558786 -0.165047 2.436220 29.409(32). 0.016
C= 7 24.345199 6.558786 -0.165047 2.436220 29.910(33) 0.501
C= 6 24.345199 6.558786 -0.165047 2.436220 29.975(34) 0.065
C= 5 24.345199 6.558786 -0.165047 2.436220 34.883(35) 4.908
C= 4 24.345199 6.558786 -0.165047 2.436220 39.846(36) 4.963
C= 3 24.345200 6.558789 -0.165049 2.831210 99.521(37) 59.676
C= 2 24.345199 6.558786 -0.122869 2.785140 100.875(38) 1.353
C= 1 24.345199 11.348019 -0.450204 2.080416 2264.908(39) 2164.033
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Table 2.Standard error of mean equating for Form X and Z

Sample size \ Form

xa) =Ny= 25

xa) = NY = 50

xrz,, NY = 100

xril = NY = 200

x(z) = = 500
xrz) = Ny = 1000

.

i

orm X

1.9605

1.3863

0.9803

0.6931

0.4384

0.3100

onn Z

2.0006
.4147

1.0003

0.7073
0.4474
0.3163
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Table 3. Standard error of linear equating on Form X under nonnormality assumptions

x; Nx=Ny=25 Nx=Ny=50 Nx=Ny=100 Nx=Ny=200 Nx=Ny=500 Nx=Ny=1000

0 5.19646514 3.67445574 2.59823257 1.83722787 1.16196493 0.82163328
1 5.01422056 3.54558936 2.50711028 1.77279468 1.12121380 0.79281788
2 4.83342577 3.41774814 2.41671321 1.70887430 1.08078701 0.76423182
3 4.65425259 3.29105357 2.32712629 1.64552678 1.04072252 0.73590195
4 4.47689359 3.16564182 2.23844680 1.58282091 1.00106384 0.70785903
5 4.30157392 3.04167209 2.15078696 1.52083605 0.96186117 0.68013856
6 4.12855340 2.91932810 2.06427670 1.45966405 0.92317260 0.65278161
7 3.95813352 2.79882306 1.97906676 1.39941153 0.88506556 0.62583586
8 3.79066508 2.68040499 1.89533254 1.34020249 0.84761848 0.59935678
9 3.62655697 2.56436303 1.81327849 1.28218151 0.81092279 0.57340901

10 3.46628650 2.45103469 1.73314325 1.22551735 0.77508523 0.54806802
11 3.31041111 2.34081414 1.65520555 1.17040707 0.74023043 0.52342195
12 3.15958133 2.23416139 1.57979067 1.11708069 0.70650386 0.49957367
13 3.01455463 2.13161202 1.50727732 1.06580601 0.67407491 0.47664294
14 2.87620896 2.03378686 1.43810448 1.01689343 0.64313988 0.45476857
15 2.74555446 1.94140018 1.37277723 0.97070009 0.61392464 0.43411028
16 2.62374037 1.85526461 1.31187018 0.92763230 0.58668618 0.41484978
17 2.51205308 1.77628977 1.25602654 0.88814488 0.56171214 0.39719047
18 2.41189982 1.70547072 1.20594991 0.85273536 0.53931720 0.38135485
19 2.32477177 1.64386188 1.16238588 0.82193094 0.51983477 0.36757869
20 2.25218110 1.59253253 1.12609055 0.79626626 0.50360300 0.35610110
21 2.19557022 1.55250259 1.09778511 0.77625130 0.49094443 0.34715013
22 2.15619814 1.52466232 1.07809907 0.76233116 0.48214056 0.34092486
23 2.13501877 1.50968625 1.06750938 0.75484312 0.47740471 0.33757611
24 2.13257422 1.50795769 1.06628711 0.75397885 0.47685809 0.33718959
25 2.14892843 1.51952187 1.07446422 0.75976093 0.48051501 0.33977542
26 2.18365907 1.54408014 1.09182953 0.77204007 0.48828101 0.34526681
27 2.23590997 1.58102710 1.11795498 0.79051355 0.49996467 0.35352841
28 2.30448970 1.62952029 1.15224485 0.81476015 0.51529956 0.36437181
29 2.38799185 1.68856523 1.19399593 0.84428262 0.53397121 0.37757466
30 2.48491254 1.75709851 1.24245627 0.87854926 0.55564334 0.39289917
31 2.59374797 1.83405678 1.29687398 0.91702839 0.57997968 0.41010756
32 2.71306462 1.91842639 1.35653231 0.95921320 0.60665969 0.42897318
33 2.84154248 2.00927396 1.42077124 1.00463698 0.63538822 0.44928732
34 2.97799608 2.10576122 1.48899804 1.05288061 0.66590017 0.47086252
35 3.12137959 2.20714868 1.56068980 1.10357434 0.69796170 0.49353345
36 3.27078177 2.31279197 1.63539089 1.15639598 0.73136904 0.51715601
37 3.42541518 2.42213430 1.71270759 1.21106715 0.76594612 0.54160569
38 3.58460289 2.53469701 1.79230144 1.26734850 0.80154157 0.56677548
39 3.74776460 2.65006976 1.87388230 1.32503488 0.83802564 0.59257361
40 3.91440341 2.76790119 1.95720170 1.38395060 0.87528721 0.61892152
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Table 4. Standard error of linear equating on Form Z under nonnormality assumptions

zi Nz=Ny=25 Nz=Ny=50 Nz=Ny=100 Nz=Ny=200 Nz=Ny=500 Nz=Ny=1000

0 5.46730615 3.86596925 2.73365307 1.93298463 1.22252682 0.86445700
1 5.07591677 3.58921517 2.53795838 1.79460758 1.13500949 0.80257291
2 4.89312129 3.45995925 2.45157756 1.73352712 1.09637881 0.77525689
3 4.73180204 3.34588931 2.36590102 1.67294465 1.05806310 0.74816359
4 4.56201625 3.22583263 2.28100812 1.61291631 1.02009784 0.72131810
5 4.39397944 3.10701266 2.19698972 1.55350633 0.98252367 0.69474915
6 4.22790015 2.98957687 2.11395008 1.49478843 0.94538721 0.66848971
7 4.06401838 2.87369496 2.03200919 1.43684748 0.90874214 0.64257773
8 3.90261098 2.75956269 1.95130549 1.37978134 0.87265034 0.61705698
9 3.74399797 2.64740635 1.87199898 1.32370318 0.83718340 0.59197806

10 3.58854991 2.53748798 1.79427496 1.26874399 0.80242415 0.56739956
11 3.43669630 2.43011126 1.71834815 1.21505563 0.76846865 0.54338940
12 3.28893505 2.32562828 1.64446753 1.16281414 0.73542824 0.52002629
13 3.14584288 2.22444683 1.57292144 1.11222342 0.70343185 0.49740143
14 3.00808616 2.12703813 1.50404308 1.06351906 0.67262851 0.47562018
15 2.87643158 2.03394428 1.43821579 1.01697214 0.64318966 0.45480377
16 2.75175512 1.94578471 1.37587756 0.97289235 0.61531115 0.43509069
17 2.63504747 1.86325994 1.31752374 0.93162997 0.58921453 0.41663759
18 2.52741279 1.78715073 1.26370640 0.89357536 0.56514668 0.39961905
19 2.43005700 1.71830978 1.21502850 0.85915489 0.54337726 0.38422575
20 2.34426106 1.65764289 1.17213053 0.82882144 0.52419271 0.37066022
21 2.27133531 1.60607660 1.13566766 0.80303830 0.50788602 0.35912965
22 2.21255274 1.56451105 1.10627637 0.78225552 0.49474183 0.34983531
23 2.16906351 1.53375952 1.08453175 0.76687976 0.48501735 0.34295905
24 2.14179940 1.51448088 1.07089970 0.75724044 0.47892091 0.33864822
25 2.13138316 1.50711549 1.06569158 0.75355774 0.47659176 0.33700127
26 2.13806104 1.51183746 1.06903052 0.75591873 0.47808498 0.33805713
27 2.16167462 1.52853478 1.08083731 0.76426739 0.48336514 0.34179077
28 2.20167905 1.55682218 1.10083952 0.77841109 0.49231040 0.34811602
29 2.25720301 1.59608355 1.12860150 0.79804178 0.50472594 0.35689513
30 2.32713590 1.64553358 1.16356795 0.82276679 0.52036341 0.36795249
31 2.41022384 1.70428562 1.20511192 0.85214281 0.53894243 0.38108985
32 2.50515822 1.77141437 1.25257911 0.88570718 0.56017041 0.39610029
33 2.61064701 1.84600620 1.30532350 0.92300310 0.58375842 0.41277954
34 2.72546495 1.92719475 1.36273247 0.96359737 0.60943249 0.43093385
35 2.84848414 2.01418245 1.42424207 1.00709123 0.63694042 0.45038489
36 2.97868863 2.10625093 1.48934431 1.05312546 0.66605503 0.47097203
37 3.11517757 2.20276319 1.55758879 1.10138159 0.69657488 0.49255282
38 3.25716103 2.30316065 1.62858052 1.15158033 0.72832335 0.51500238
39 3.40395153 2.40695721 1.70197576 1.20347860 0.76114670 0.53821199
40 3.55495363 2.51373182 1.77747682 1.25686591 0.79491180 0.56208752
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Table 5. Standard error of linear equating on Form X under normality assumptions

xi Nx=Ny=25 Nx.=Ny=50 Nx=Ny=100 Nx=Ny=200

43

Nx=Ny=500 Nx=Ny=1000

0 5.93427521 4.19616624 2.96713761 2.09808312 1.32694428 0.93829130
1 5.70939684 4.03715322 2.85469842 2.01857661 1.27665994 0.90273490
2 5.48595368 3.87915505 2.74297684 1.93957753 1.22669654 0.86740544
3 5.26412852 3.72230097 2.63206426 1.86115049 1.17709492 0.83233180
4 5.04413480 3.56674192 2.52206740 1.78337096 1.12790283 0.79754774
5 4.82622299 3.41265500 2.41311149 1.70632750 1.07917627 0.76309286
6 4.61068828 3.26024895 2.30534414 1.63012447 1.03098124 0.72901383
7 4.39788018 3.10977090 2.19894009 1.55488545 0.98339590 0.69536591
8 4.18821435 2.96151477 2.09410717 1.48075738 0.93651320 0.66221483
9 3.98218714 2.81583153 1.99109357 1.40791576 0.89044411 0.62963907

10 3.78039349 2.67314188 1.89019675 1.33657094 0.84532168 0.59773269
11 3.58354868 2.53395158 1.79177434 1.26697579 0.80130585 0.56660880
12 3.39251426 2.39886984 1.69625713 1.19943492 0.75858925 0.53640360
13 3.20832830 2.26863069 1.60416415 1.13431535 0.71740402 0.50728124
14 3.03223903 2.14411678 1.51611951 1.07205839 0.67802926 0.47943909
15 2.86573939 2.02638375 1.43286969 1.01319188 0.64079881 0.45311318
16 2.71059708 1.91668158 1.35529854 0.95834079 0.60610793 0.42858303
17 2.56887067 1.81646587 1.28443533 0.90823293 0.57441694 0.40617412
18 2.44289625 1.72738850 1.22144812 0.86369425 0.54624821 0.38625581
19 2.33522446 1.65125305 1.16761223 0.82562653 0.52217206 0.36923141
20 2.24848618 1.58991982 1.12424309 0.79495991 0.50277679 0.35551688
21 2.18517563 1.54515251 1.09258782 0.77257625 0.48862013 0.34550660
22 2.14736597 1.51841704 1.07368298 0.75920852 0.48016563 0.33952837
23 2.13641155 1.51067109 1.06820577 0.75533555 0.47771614 0.33779633
24 2.15272237 1.52220459 1.07636119 0.76110229 0.48136336 0.34037529
25 2.19569091 1.55258793 1.09784545 0.77629397 0.49097141 0.34716922
26 2.26379971 1.60074813 1.13189986 0.80037406 0.50620100 0.35793816
27 2.35486843 1.66514344 1.17743422 0.83257172 0.52656459 0.37233739
28 2.46635503 1.74397637 1.23317752 0.87198818 0.55149375 0.38996497
29 2.59562990 1.83538750 1.29781495 0.91769375 0.58040049 0.41040512
30 2.74017657 1.93759744 1.37008829 0.96879872 0.61272211 0.43325996
31 2.89771053 2.04899077 1.44885527 1.02449538 0.64794777 0.45816826
32 3.06623069 2.16815251 1.53311535 1.08407626 0.68563003 0.48481364
33 3.24402537 2.29387234 1.62201268 1.14693617 0.72538612 0.51292545
34 3.42965248 2.42513053 1.71482624 1.21256526 0.76689361 0.54227567
35 3.62190797 2.56107569 1.81095398 1.28053784 0.80988324 0.57267393
36 3.81979111 2.70100020 1.90989556 1.35050010 0.85413126 0.60396201
37 4.02247145 2.84431684 2.01123573 1.42215842 0.89945196 0.63600858
38 4.22925935 2.99053797 2.11462967 1.49526898 0.94569114 0.66870462
39 4.43958087 3.13925774 2.21979044 1.56962887 0.99272046 0.70195937
40 4.65295687 3.29013736 2.32647843 1.64506868 1.04043279 0.73569708



Table 6. Standard error of linear equating on Form Z under normality assumptions

zi Nz=Ny=25 Nz=Ny=50 Nz=Ny=100
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Nz=Ny=200 Nz=N y=500 Nz=Ny=1000

0 6.00020498 4.24278563 3.00010249 2.12139281 1.34168662 0.94871571
1 5.78556435 4.09101179 2.89278218 2.04550589 1.29369152 0.91477805
2 5.57217539 3.94012300 2.78608769 1.97006150 1.24597629 0.88103829
3 5.36018758 3.79022498 2.68009379 1.89511249 1.19857438 0.84752007
4 5.14977396 3.64144009 2.57488698 1.82072004 1.15152446 0.81425076
5 4.94113564 3.49391052 2.47056782 1.74695526 1.10487152 0.78126214
6 4.73450734 3.34780224 2.36725367 1.67390112 1.05866802 0.74859134
7 4.53016409 3.20330975 2.26508204 1.60165487 1.01297548 0.71628183
8 4.32842953 3.06066187 2.16421477 1.53033094 0.96786627 0.68438480
9 4.12968600 2.92012897 2.06484300 1.46006449 0.92342586 0.65296069

10 3.93438678 2.78203157 1.96719339 1.39101579 0.87975563 0.62208117
11 3.74307104 2.64675092 1.87153552 1.32337546 0.83697613 0.59183150
12 3.55638173 2.51474164 1.77819087 1.25737082 0.79523113 0.56231332
13 3.37508664 2.38654665 1.68754332 1.19327333 0.75469232 0.53364805
14 3.20010270 2.26281432 1.60005135 1.13140716 0.71556472 0.50598066
15 3.03252262 2.14431731 1.51626131 1.07215865 0.67809267 0.47948393
16 2.87364198 2.03197173 1.43682099 1.01598586 0.64256588 0.45436269
17 2.72498287 1.92685387 1.36249144 0.96342693 0.60932469 0.43085762
18 2.58830712 1.83020951 1.29415356 0.91510476 0.57876307 0.40924729
19 2.46560833 1.74344837 1.23280417 0.87172419 0.55132678 0.38984691
20 2.35906842 1.66811328 1.17953421 0.83405664 0.52750374 0.37300147
21 2.27096276 1.60581317 1.13548138 0.80290658 0.50780271 0.35907074
22 2.20350369 1.55811241 1.10175185 0.77905620 0.49271841 0.34840453
23 2.15862777 1.52638034 1.07931389 0.76319017 0.48268384 0.34130902
24 2.13775767 1.51162294 1.06887883 0.75581147 0.47801715 0.33800917
25 2.14159531 1.51433657 1.07079765 0.75716828 0.47887527 0.33861595
26 2.17000962 1.53442852 1.08500481 0.76721426 0.48522890 0.34310865
27 2.22205798 1.57123227 1.11102899 0.78561613 0.49686727 0.35133822
28 2.29613376 1.62361175 1.14806688 0.81180588 0.51343112 0.36305063
29 2.39018984 1.69011945 1.19509492 0.84505972 0.53446270 0.37792220
30 2.50197389 1.76916271 1.25098695 0.88458135 0.55945837 0.39559681
31 2.62922572 1.85914334 1.31461286 0.92957167 0.58791274 0.41571709
32 2.76981427 1.95855445 1.38490713 0.97927723 0.61934930 0.43794609
33 2.92181500 2.06603520 1.46090750 1.03301760 0.65333770 0.46197952
34 3.08354072 2.18039256 1.54177036 1.09019628 0.68950067 0.48755060
35 3.25354154 2.30060128 1.62677077 1.15030064 0.72751400 0.51443009
36 3.43058746 2.42579166 1.71529373 1.21289583 0.76710268 0.54242350
37 3.61364314 2.55523157 1.80682157 1.27761578 0.80803517 0.57136715
38 3.80184058 2.68830726 1.90092029 1.34415363 0.85011740 0.60112378
39 3.99445310 2.82450487 1.99722655 1.41225244 0.89318687 0.63157849
40 4.19087198 2.96339400 2.09543599 1.48169700 0.93710746 0.66263504

50
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Table 7. Standard error for equipercentile equating on Form X under nonnormality assumptions

xi

0
1

Nx=Ny=25

*
*

Nx=Ny=50

*
*

Nx=Ny=100

*
*

Nx=Ny=200

*
*

Nx=Ny=500

*

Nx=Ny=1000

*
2 2.39324058 1.69227664 1.19662029 0.84613832 0.53514486 0.37840456
3 13.52836270 9.56599700 6.76418135 4.78299850 3.02503386 2.13902196
4 58.01630680 41.02372400 29.00815340 20.51186200 12.972840§0 9.17318355
5 25.77125490 18.22302910 12.88562740 9.11151455 5.76262778 4.07479318
6 21.65386050 15.31159160 10.82693020 7.65579579 4.84195040 3.42377596
7 8.32320517 5.88539482 4.16160259 2.94269741 1.86112526 1.31601429
8 6.61307744 4.67615191 3.30653872 2.33807595 1.47872907 1.04561935
9 5.49375765 3.88467329 2.74687882 1.94233664 1.22844156 0.86863935

10 4.80389240 3.39686489 2.40194620 1.69843244 1.07418300 0.75956208
11 4.43082156 3.13306397 2.21541078 1.56653198 0.99076182 0.70057440
12 4.29997486 3.04054139 2.14998743 1.52027069 0.96150361 0.67988572
13 3.56753665 2.52262936 1.78376833 1.26131468 0.79772545 0.56407707
14 3.69656585 2.61386678 1.84828292 1.30693339 0.82657725 0.58447838
15 3.54092734 2.50381374 1.77046367 1.25190687 0.79177542 0.55986977
16 3.64988709 2.58085991 1.82494354 1.29042995 0.81613956 0.57709782
17 3.47066362 2.45412978 1.73533181 1.22706489 0.77606398 0.54876010
18 3.48386188 2.46346236 1.74193094 1.23173118 0.77901520 0.55084693
19 3.25763575 2.30349633 1.62881787 1.15174816 0.72842950 0.51507744
20 3.20451201 2.26593218 1.60225601 1.13296609 0.71655067 0.50667784
21 3.17170196 2.24273196 1.58585098 1.12136598 0.70921412 0.50149011
22 3.07468686 2.17413193 1.53734343 1.08706596 0.68752088 0.48615068
23 3.04241511 2.15131236 1.52120756 1.07565618 0.68030470 0.48104807
24 3.01833353 2.13428410 1.50916676 1.06714205 0.67491989 0.47724043
25 2.99155065 2.11534575 1.49577533 1.05767288 0.66893106 0.47300569
26 2.94986438 2.08586911 1.47493219 1.04293455 0.65960973 0.46641451
27 2.92297951 2.06685864 1.46148976 1.03342932 0.65359809 0.46216364
28 2.78142616 1.96676530 1.39071308 0.98338265 0.62194580 0.43978209
29 2.63527812 1.86342303 1.31763906 0.93171152 0.58926610 0.41667406
30 2.52389957 1.78466650 1.26194979 0.89233325 0.56436110 0.39906356
31 2.25530403 1.59474078 1.12765202 0.79737039 0.50430131 0.35659488
32 2.14094283 1.51387520 1.07047142 0.75693760 0.47872937 0.33851278
33 2.19807917 1.55427669 1.09903958 0.77713834 0.49150544 0.34754683
34 1.89641704 1.34096935 0.94820852 0.67048468 0.42405174 0.29984986
35 2.03275435 1.43737438 1.01637717 0.71868719 0.45453769 0.32140668
36 2.74684755 1.94231453 1.37342377 0.97115726 0.61421378 0.43431473
37 1.89024509 1.33660512 0.94512255 0.66830256 0.42267165 0.29887399
38 2.73075955 1.93093860 1.36537978 6.96546930 0.61061640 0.43177100
39 1.23565139 0.87373747 0.61782569 0.43686874 0.27630005 0.19537364
40 0.43972470 0.31093232 0.21986235 0.15546616 0.09832543 0.06952658

* represents almost zero
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Table 8. Standard error for equipercentile equating on Form Z under nonnormality assumptions

Nz=Ny=25 Nz=N y=50 Nz=Ny=100 Nz=Ny=200 Nz=Ny=500 Nz=Ny=1000

0 * * * * *

1 * * * * *

2 0.68994440 0.48786436 0.34497220 0.24393218 0.15427626 0.10908979
3 3.85547229 2.72623060 1.92773614 1.36311530 0.86210981 0.60960369
4 17.40424190 12.30665750 8.70212094 6.15332873 3.89170679 2.75185226
5 48.97018300 34.62714850 24.48509150 17.31357420 10.95006580 7.74286578
6 31.92833080 22.57673920 15.96416540 11.28836960 7.13939180 5.04831236
7 13.61445150 9.62687100 6.80722577 4.81343550 3.04428391 2.15263380
8 6.39482090 4.52182122 3.19741045 2.26091061 1.42992542 1.01110996
9 5.69884380 4.02969109 2.84942190 2.01484555 1.27430021 0.90106632

10 5.25378107 3.71498422 2.62689053 1.85749211 1.17478116 0.83069573
11 4.93477347 3.48941178 2.46738674 1.74470589 1.10344889 0.78025620
12 3.63633267 2.57127549 1.81816634 1.28563775 0.81310870 0.57495468
13 3.62754618 2.56506250 1.81377309 1.28253125 0.81114398 0.57356541
14 3.65082827 2.58152542 1.82541413 1.29076271 0.81635002 0.57724663
15 3.68666930 2.60686886 1.84333465 1.30343443 0.82436432 0.58291360
16 3.72034189 2.63067898 1.86017095 1.31533949 0.83189374 0.58823770
17 3.74161656 2.64572244 1.87080828 1.32286122 0.83665090 0.59160152
18 3.74502398 2.64813185 1.87251199 1.32406593 0.83741282 0.59214028
19 3.40598885 2.40839781 1.70299442 1.20419890 0.76160226 0.53853412
20 3.34359555 2.36427909 1.67179778 1.18213954 0.74765069 0.52866888
21 3.28068814 2.31979683 1.64034407 1.15989841 0.73358417 0.51872234
22 3.22471189 2.28021564 1.61235595 1.14010782 0.72106750 0.50987172
23 3.18181755 2.24988477 1.59090877 1.12494238 0.71147603 0.50308953
24 3.07280653 2.17280233 1.53640326 1.08640117 0.68710043 0.48585337
25 3.04101311 2.15032099 1.52050656 1.07516050 0.67999120 0.48082639
26 3.01645712 2.13295728 1.50822856 1.06647864 0.67450032 0.47694375
27 2.99133987 2.11519671 1.49566993 1.05759835 0.66888393 0.47297236
28 2.99696040 2.11917102 1.49848020 1.05958551 0.67014072 0.47386105
29 2.86553254 2.02623749 1.43276627 1.01311875 0.64075256 0.45308048
30 2.70764443 1.91459374 1.35382222 0.95729687 0.60544770 0.42811617
31 2.53394278 1.79176813 1.26697139 0.89588406 0.56660683 0.40065153
32 2.37067055 1.67631722 1.18533528 0.83815861 0.53009805 0.37483593
33 2.26637153 1.60256668 1.13318576 0.80128334 0.50677608 0.35834480
34 2.30706573 1.63134182 1.15353287 0.81567091 0.51587558 0.36477912
35 1.90452992 1.34670602 0.95226496 0.67335301 0.42586584 0.30113262
36 1.97665817 1.39770839 0.98832908 0.69885420 0.44199420 0.31253710
37 2.50600189 1.77201093 1.25300095 0.88600547 0.56035906 0.39623369
38 1.75453639 1.24064458 0.87726820 0.62032229 0.39232626 0.27741656
39 2.34088510 1.65525573 1.17044255 0.82762786 0.52343782 0.37012643
40 0.98294781 0.69504906 0.49147390 0.34752453 0.21979381 0.15541770

* represents almost zero
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Table 9. Standard error for equipercentile equating on Form X under normality assumptions

xi Nx=Ny=25 Nx=Ny=50 Nx=Ny=100 Nx=Ny=200 Nx=Ny=500 Nx=Ny=1000

0 * * * *
1 * * * * *

2 0.34885285 0.24667622 0.17442643 0.12333811 0.07800587 0.05515848
3 1.13685261 0.80387619 0.56842631 0.40193809 0.25420797 0.17975218
4 2.19125837 1.54945365 1.09562919 0.77472683 0.48998027 0.34646837
5 3.23429040 2.28698868 1.61714520 1.14349434 0.72320932 0.51138621
6 3.99643534 2.82590653 1.99821767 1.41295327 0.89363011 0.63189191
7 4.40855780 3.11732111 2.20427890 1.55866056 0.98578349 0.69705419
8 4.54106024 3.21101449 2.27053012 1.60550725 1.01541194 0.71800467
9 4.53679999 3.20800203 2.26839999 1.60400102 1.01445932 0.71733106

10 4.43707314 3.13748451 2.21853657 1.56874225 0.99215972 0.70156286
11 4.30516649 3.04421242 2.15258325 1.52210621 0.96266449 0.68070659
12 4.15219515 2.93604535 2.07609757 1.46802267 0.92845906 0.65651970
13 3.98865282 2.82040346 1.99432641 1.41020173 0.89188988 0.63066139
14 3.81336022 2.69645287 1.90668011 1.34822643 0.85269327 0.60294519
15 3.63166370 2.56797403 1.81583185 L28398702 0.81206469 0.57421645
16 3.44668582 2.43717492 1.72334291 1.21858746 0.77070238 0.54496888
17 3.26708413 2.31017734 1.63354206 1.15508867 0.73054222 0.51657136
18 3.10079508 2.19259323 1.55039754 1.09629661 0.69335886 0.49027875
19 2.95495607 2.08946947 1.47747803 1.04473474 0.66074826 0.46721958
20 2.83651152 2.00571653 1.41825576 1.00285827 0.63426326 0.44849185
21 2.74919188 1.94397222 1.37459594 0.97198611 0.61473799 0.43468540
22 2.69518935 1.90578667 1.34759467 0.95289333 0.60266266 0.42614685
23 2.67617022 1.89233811 1.33808511 0.94616906 0.59840985 0.42313967
24 2.69262188 1.90397119 1.34631094 0.95198559 0.60208856 0.42574090
25 2.74393370 1.94025413 1.37196685 0.97012706 0.61356223 0.43385401
26 2.83034240 2.00135431 1.41517120 1.00067715 0.63288380 0.44751643
27 2.95414328 2.08889475 1.47707164 1.04444737 0.66056652 0.46709107
28 3.11824711 2.20493368 1.55912356 1.10246684 0.69726125 0.49303816
29 3.32562906 2.35157486 1.66281453 1.17578743 0.74363326 0.52582812
30 3.58497509 2.53496020 1.79248754 1.26748010 0.80162480 0.56683433
31 3.90497035 2.76123101 1.95248517 1.38061551 0.87317792 0.61743002
32 4.29891411 3.03979132 2.14945705 1.51989566 0.96126642 0.67971800
33 4.76920822 3.37233947 2.38460411 1.68616974 1.06642738 0.75407803
34 5.31021342 3.75488792 2.65510671 1.87744396 1.18739982 0.83961846
35 5.87000233 4.15071845 2.93500117 2.07535923 1.31257242 0.92812886
36 6.35192623 4.49149011 3.17596311 2.24574505 1.42033388 1.00432772
37 6.54827544 4.63032997 3.27413772 2.31516498 1.46423890 1.03537326
38 6.14703270 4.34660850 3.07351635 2.17330425 1.37451830 0.97193121
39 4.89175185 3.45899091 2.44587593 1.72949545 1.09382897 0.77345388
40 2.87543233 2.03323770 1.43771617 1.01661885 0.64296622 0.45464577

* represents almost zero

53



Table 10. Standard error for equipercentile equating on Form Z under normality assumptions

48

z. Nz=Ny=25 Nz=Ny=50 Nz=Ny=100 Nz=Ny=200 Nz=Ny=500 Nz=Ny=1000

0 * * * * *

1 * * * * *

2 0.12588143 0.08901161 0.06294072 0.04450581 0.02814794 0.01990360
3 0.42052686 0.29735740 0.21026343 0.14867870 0.09403267 0.06649114
4 1.08323427 0.76596230 0.54161713 0.38298115 0.24221855 0.17127438
5 2.20575189 1.55970212 1.10287595 0.77985106 0.49322112 0.34876000
6 3.53216154 2.49761538 1.76608077 1.24880769 0.78981533 0.55848378
7 4.70103362 3.32413275 2.35051681 1.66206638 1.05118307 0.74329868
8 5.64386078 3.99081223 2.82193039 1.99540611 1.26200564 0.89237274
9 6.20151262 4.38513163 3.10075631 2.19256581 1.38670038 0.98054524

10 6.32898957 4.47527144 3.16449478 2.23763572 1.41520509 1.00070112
11 6.04108235 4.27169030 3.02054118 2.13584515 1.35082708 0.95517899
12 5.69102975 4.02416573 2.84551487 2.01208286 1.27255294 0.89983081
13 5.24810205 3.71096855 2.62405103 1.85548427 1.17351129 0.82979779
14 4.78644772 3.38452964 2.39322386 1.69226482 1.07028225 0.75680384
15 4.28878529 3.03262916 2.14439264 1.51631458 0.95900154 0.67811650
16 3.91419618 2.76775466 1.95709809 1.38387733 0.87524087 0.61888876
17 3.59264931 2.54038669 1.79632466 1.27019335 0.80334081 0.56804773
18 2.48332600 1.75597666 1.24166300 0.87798833 0.55528858 0.39264832
19 3.08992507 2.18490697 1.54496253 1.09245348 0.69092825 0.48856005
20 2.93114165 2.07263014 1.46557082 1.03631507 0.65542320 0.46345419
21 2.81472259 1.99030943 1.40736130 0.99515472 0.62939111 0.44504672
22 2.73567580 1.93441491 1.36783790 0.96720746 0.61171571 0.43254832
23 2.69018708 1.90224953 1.34509354 0.95112476 0.60154412 0.42535593
24 2.67322832 1.89025787 1.33661416 0.94512894 0.59775202 0.42267451
25 2.68879556 1.90126558 1.34439778 0.95063279 0.60123297 0.42513591
26 2.73095967 1.93108010 1.36547984 0.96554005 0.61066115 0.43180264
27 2.79770960 1.97827943 1.39885480 0.98913972 0.62558689 0.44235673
28 2.90500035 2.05414545 1.45250018 1.02707272 0.64957783 0.45932089
29 3.02304806 2.13761778 1.51152403 1.06880889 0.67597410 0.47798587
30 3.16485393 2.23788968 1.58242697 1.11894484 0.70768285 0.50040734
31 3.32524846 2.35130574 1.66262423 1.17565287 0.74354816 0.52576795
32 3.54397029 2.50596543 1.77198515 1.25298271 0.79245585 0.56035090
33 3.73612946 2.64184248 1.86806473 1.32092124 0.83542395 0.59073394
34 3.92064183 2.77231242 1.96032091 1.38615621 0.87668216 0.61990790
35 4.07544714 2.88177631 2.03772357 1.44088815 0.91129768 0.64438477
36 4.24232948 2.99977995 2.12116474 1.49988997 0.94861371 0.67077119
37 4.22186782 2.98531137 2.11093391 1.49265568 0.94403834 0.66753592
38 4.02072428 2.84308141 2.01036214 1.42154070 0.89906128 0.63573233
39 3.52449628 2.49219522 1.76224814 1.24609761 0.78810133 0.55727179
40 2.49573903 1.76475399 1.24786951 0.88237700 0.55806421 0.39461099

* represents almost zero
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Table 11. Sample size required using equations (26) through (28): z-score range -2 to +2
The alternative procedure of theoretical methods

Standard Unit ean Linear Equipercentile

0.05 1600 4800 12226

4

1

4

1200

3

134

3057

765

340

192

123

85

63

1.

8

38

Table 12. Sample size required using equations (23) through (25): z-score range -3 to +3
--- The first procedure of theoretical methods

Standard Unit ean Linear Equipercentilel
0.05 1600 2400 4825

4 6 1207
1 150 302

135
76
49

1 34
25
19

15

1 13

55
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Table 13. Summary of the minimum sample size required based on real data

Form

X

z

0

can Linear

Nonnormality Normality

Equipercentile

Nonnormality Normality

0

51

145 161

Table 14. Sample size results based on Method 1 (M1) and Method 2 (M2)

Mean inear uipercentile

Form

X

z

0

M1

U=.

M1

U=.

M1

u=.

U=. u=. 193

M2

51

161

Note: In Method 1, the u values are derived from real data [equation (29)]. Then, these values

are used in formulas (23), (24), and (25). In Method 2, formulas (18), (20), and (22) are used

and do not require a u-value.
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Figure 2. Log-linear C=8
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Figure 3. Log-linear C=6
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Figure 4. Standard error of linear equating under nonnormality assumptions
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Figure 5. Standrad error of linear equating under nonnormality assumptions
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Figure 6. Standard error of linear equating under normality assumptions
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Figure 7. Standard error of linear equating under normality assumptions
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Figure 8. Standard error of equipercentile equating under nonnormality assumptions
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Figure 9. Standard error of equipercentile equating under nonnormality assumptions
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Figure 10. Standard error of equipercentile equating under normality assumptions
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Figure 11.Standard error of equipercentile equating under normality assumptions
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